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Abstract

Over the past decade portfolio choice has become an important element of many

DSGE open economy models. However, there is a substantial body of evidence that

is inconsistent with standard frictionless portfolio choice models. In this paper we

introduce a quadratic cost of changes in portfolio allocation into a two-country DSGE

model. We investigate what level of portfolio frictions is most consistent with the

data and the impact of portfolio frictions on asset prices and net capital flows. We

find that the portfolio friction can account for (i) micro evidence of portfolio inertia

by households, (ii) macro evidence of the price impact of financial shocks and related

disconnect of asset prices from observed fundamentals, (iii) a broad set of moments

related to the time series behavior of saving, investment and net capital flows, and (iv)

phenomena such as excess return momentum, reversal and post-earnings announcement

drift. For a plausible level of the friction, financial and saving shocks each account for

close to half of the variance of net capital flows.
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1 Introduction

Portfolio allocation decisions naturally affect both asset prices and capital flows. But apart

from ad hoc models such as the Mundell-Fleming model and portfolio balance models, port-

folio choice played a limited role in open-economy models until about 2010. Gourinchas

(2006) wrote: “Looking ahead, the next obvious step is to build general equilibrium models

of international portfolio allocation with incomplete markets. I see this as a major task that

will close a much needed gap in the literature...”. Until that point in time, most models

either assumed complete markets or trade in risk-free bonds.1 This has changed significantly

over the past decade, starting with the development of solution techniques for open econ-

omy DSGE models with portfolio choice.2 However, the predictions of standard frictionless

portfolio choice models have some features that are sharply at odds with the data. In this

paper we introduce a portfolio adjustment cost, giving rise to gradual portfolio adjustment

in response to shocks. This generates model predictions that are more consistent with micro

evidence of portfolio choice and macro evidence on the importance of financial shocks and

features of asset price dynamics such as excess return momentum and reversal and post-

earnings announcement drift. We then investigate the impact of this friction on asset prices

and net capital flows.

A simple frictionless mean-variance two-asset portfolio choice model implies

zt =
Et(ert+1)

γvar(ert+1)
, (1)

where the expected excess return is divided by the product of risk aversion and the variance

of the excess return. All that matters is the expected excess return and risk over the next

period. Past portfolio choice has no direct impact on current portfolio choice, nor do future

expected returns and risk beyond the next period. Moreover, the portfolio is very sensitive

to changes in expected returns over the next period as the variance of the excess return tends

to be small and all investors adjust their portfolio immediately.

These features contrast with the micro evidence on portfolio choice. First, a substantial

number of papers have documented portfolio inertia of households.3 Based on a survey of

US households that hold equity or equity mutual funds, the Investment Company Institute

reports that about 60 percent make no change to their stock or mutual fund portfolio during

1Models with trade in bonds usually allow agents to hold claims on domestic capital as well, but portfolio
choice is typically removed through linearization that implies zero expected excess returns.

2See Devereux and Sutherland (2007, 2010), Tille and van Wincoop (2010, 2014) and Evans and
Hnatkovska (2012, 2014) for local solution methods and Bacchetta, van Wincoop and Young (2021) and
Sauzet (2021) for global solution methods.

3See for example Ameriks and Zeldes (2004), Bilias et al. (2010), Brunnermeier and Nagel (2008), Mitchell
et al. (2006).
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any particular year.4 Even less frequent portfolio changes apply to retirement accounts. The

Investment Company Institute (2021) reports that for over 30 million employer-based defined

contribution retirement plans, 90 percent of investors made no changes over a given year

to allocations of their account balances from 2010 to 2020 (Investment Company Institute,

2021).5 Giglio et al. (2021) consider the portfolio and expected returns of US-based Vanguard

investors. They find not only that investors change their portfolios infrequently, but that

the responsiveness to expected returns is much weaker than implied by (1) for a plausible

rate of risk-aversion.

In the international context, there is related evidence for mutual funds. Bacchetta,

Tièche and van Wincoop (2020) consider the global portfolios of US equity mutual funds.

They find that these mutual funds face significant costs to portfolio adjustment that lead to

both portfolio inertia and a weak portfolio response to expected returns.6 Camanho et al.

(2020) also use data for international equity mutual funds, providing evidence of infrequent

portfolio rebalancing.

At the macro level, a frictionless portfolio model like (1) implies that financial shocks

have little effect on asset prices. A financial shock is a latent asset demand or portfolio shock.

Such portfolio shocks can be driven by many factors, such as time-varying risk, time-varying

risk aversion or risk-bearing capacity, hedge trade, expectational errors, liquidity trade or

asset trading costs. Koijen and Yogo (2019) define these shocks as unrelated to observed

asset characteristics. Since portfolios are so sensitive to expected excess returns, a very small

change in the expected excess return is sufficient to clear the market, implying a very small

price impact of financial shocks. Gabaix and Koijen (2020) use granular IV to show that

financial shocks have a large impact on equity prices, about a factor 100 larger than implied

by frictionless models.

Related to the large price impact of financial shocks, there is evidence that they are the

dominant driver of asset prices. Gabaix and Koijen (2020) estimate that 89 percent of the

variance of equity returns is associated with financial shocks. Similarly, Koijen and Yogo

(2019) estimate that latent asset demand shocks account for 81 percent of the cross-sectional

variance of stock returns. This is also the main message of Itskhoki and Muhkin (2021) for

the foreign exchange market, who argue that exchange rates are largely driven by financial

shocks, accounting for the disconnect from observed macro fundamentals.

Frictionless models also have a hard time accounting for asset prices dynamics such as

4In the year 2001, 60 percent made no change (see Equity Ownership of America, 2002). In 2007, 57
percent made no change (see Equity and Bond Ownership in America, 2008). This is based on equity holdings
either as part of or outside an employer-sponsored retirement plan.

5Similarly, Mitchell et al. (2006) find that 80 percent of 1.2 million workers with 401(k) plans initiated
no trades over a two-year period.

6Related to that, Bohn and Tesar (1996) and Froot et al. (2001) find that international portfolio flows
are highly persistent and strongly related to lagged returns.
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momentum and reversal in excess returns that is documented in a large literature. Specif-

ically, excess returns are positively correlated with their own lag up to about 12 months

(momentum), while they are negatively autocorrelated for longer lags (reversal). Closely re-

lated is the phenomenon of post-earnings announcement drift, where equity prices continue

to rise for several months or quarters subsequent to positive earnings news.

We introduce a quadratic portfolio adjustment cost into a two country DSGE model.

Gârleanu and Pedersen (2013) analyze this type of friction in a partial equilibrium portfolio

choice model. Bacchetta and van Wincoop (2021) use it in a model with short-term and

long-term bonds to account for exchange rate puzzles, while Bacchetta, Tièche, and van

Wincoop (2020) apply it to the equity market.7

A quadratic portfolio adjustment cost changes the frictionless portfolio (1) in two im-

portant ways, one backward looking and one forward looking. First, the optimal portfolio

will not just depend on expected returns, but also on last period’s portfolio. This gradual

portfolio adjustment is consistent with evidence of portfolio inertia exhibited by households

and mutual funds. Second, the optimal portfolio depends not just on the expected excess re-

turn over the next period, but the present value of all future expected excess returns. These

backward and forward looking features of the optimal portfolio have several implications.

First, they imply that the portfolio is much less sensitive to the expected excess return over

the near future, leading to a significantly larger price impact of financial shocks. Second,

the gradual portfolio adjustment generates features such as excess return momentum and

reversal, and post-earnings announcement drift as a humped shaped portfolio response to

shocks is reflected in asset prices.8

Besides the quadratic portfolio costs, the model features infinitely-lived agents with broad

claims on Home and Foreign capital. This contrasts with previous models with quadratic

portfolio costs that have considered partial equilibrium models or focused on a particular

asset market. It allows us to consider the implications for overall net capital flows, or the

current account, by embedding the portfolio friction into a standard open economy DSGE

model of saving and investment decisions.9 We assume Rince preferences (see Farmer, 1990),

so that we can conveniently separate portfolio decisions from consumption decisions. We

model financial shocks as exogenous tax shocks on foreign portfolio holdings. These shocks

generate portfolio shifts by introducing an exogenous additive component to the portfolio

expression.

Besides financial shocks, the model also has dividend shocks (productivity shocks and

7In a closed economy, Bonaparte et al. (2012) examine the implications of quadratic portfolio adjustment
costs for equity only.

8Another implication is the predictability of excess returns, as shown in Bacchetta and van Wincoop
(2021) for exchange rates. We will not focus on this aspect in this paper.

9Our focus here is on net capital flows, not gross capital flows. The portfolio friction affects the portfolio
response to changes in expected excess returns. This affects net capital flows, not gross flows.
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capital share shocks), saving shocks (time-discount rate shocks) and investment shocks (per-

turbation to a standard Tobin Q investment relationship). Both types of dividend shocks

are needed as the volatility of profits (net operating surplus) cannot be accounted for by

productivity shocks alone. Saving and investment shocks are needed to account for the ob-

served volatility of saving and investment rates in the data. We also make sure that there is

a realistic relationship between asset prices and saving and investment rates.

We consider both the level of the portfolio friction that is most consistent with the data

and the impact of a change in the friction on the relative asset price and net capital flows.

For the former exercise we adjust some other parameters to target key moments, such as the

volatility of the saving rate, investment rate and excess return. The model is most consistent

with the data for an intermediate level of the financial friction that is reasonable in light

of portfolio inertia at the household level. Financial shocks are then the main driver of the

relative asset price, consistent with the literature. Net capital flows are about equally driven

by financial shocks and saving shocks.

When the friction is too high, the autocorrelation of the excess return becomes too high

as a result of the gradual portfolio adjustment that leads to a gradual asset price change in

response to some shocks. In other words, there is too much excess return momentum. When

there is no friction, the size of the financial shock that is needed to target key moments

(particularly the volatility of the excess return) becomes enormous. This is due to a very

small price impact of financial shocks. For a more reasonable size of financial shocks, excess

return volatility is much too low and the relative asset price is largely driven by dividends.

This contrasts with evidence that asset prices are largely driven by financial shocks. The

frictionless case also does not produce any excess return momentum and reversal, nor is it

able to generate post-earnings announcement drift.

We find that a higher portfolio friction, holding other parameters constant, raises the

impact of financial and saving shocks on the relative asset price, while it weakens the price

impact of shocks that affect dividends (productivity shocks, capital share shocks and invest-

ment shocks). A higher friction increases the response of net capital flows to financial shocks

and shocks that affect dividends, while it has little effect on the response of net capital flows

to a saving shock.

Besides a portfolio adjustment cost, there are two alternative ways of modeling sticky

portfolios. A common approach in the finance literature is to assume that investors change

their portfolios infrequently at fixed intervals in an overlapping manner.10 It is also possible

to assume a constant probability of changing portfolio shares, as in Bacchetta, van Wincoop

and Young (2021). While the three approaches differ in their details, they imply similar

10See Lynch (1996), Gabaix and Laibson (2002), Abel et. al (2007), Bacchetta and van Wincoop (2010),
Bogousslavsky (2016), Duffie (2010), Chien et al. (2012), Greenwood et al. (2018) or Hendershott et al.
(2013).
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linearized portfolio expressions and similar asset price dynamics. The similarity of modeling

approaches for portfolio stickiness is akin to the three approaches for price stickiness: Calvo

pricing with a fixed probability of adjusting prices; staggered Taylor contracts; or Rotemberg

adjustment costs. The approach in this paper is similar to the Rotemberg approach and is

the most tractable in a DSGE model.

As discussed, one of the problems with the frictionless portfolio model is the significant

sensitivity of the portfolio to expected returns. Making portfolios less sensitive to expected

returns will increase the price impact of financial shocks. Portfolio frictions are not the only

way to accomplish this. Alternatives are models that raise the effective rate of risk aversion

or perceived risk. The former is the case in models with segmented markets11, where a limited

number of arbitrageurs bear most of the risk, or in models where there is a cost to deviate

from a certain level of asset holdings (e.g. Schmidt-Grohé and Uribe (2003)).12 Models with

long-term risk or disaster risk, as in Dou and Verdelhan (2015), have a similar implication as

well. All raise the denominator of (1), making portfolios less sensitive to expected returns.

But these assumptions do not generate the forward and backward looking aspects that a

model with portfolio frictions does, which generate gradual portfolio adjustment to shocks

and therefore asset price dynamics such as momentum and reversal.

The remainder of the paper is organized as follows. Section 2 presents the model. Section

3 describes the data and calibration procedure. The two countries in the calibration are the

US and the aggregate of the other G7 countries. Section 4 discusses the results. We also

consider an extension where there is a cost of deviating from the buy-and-hold portfolio

instead of the lagged portfolio. In that case there is a cost to any asset trade, even trade

associated with portfolio rebalancing. Section 5 concludes.

2 Model Description

We introduce costly portfolio adjustment in a one-good, two-country model of saving and

investment. The two countries are Home and Foreign and there are two assets. We assume

two types of agents. Investors hold the two assets and make saving and portfolio decisions.

Households earn labor income and are simply hand to mouth.

11See for example Gabaix and Maggiori (2015), Gourinchas et al. (2020), Greenwood et al. (2020) and
Itskhoki and Muhkin (2021).

12Yakin (2020) shows that these have similar implications.
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2.1 Portfolio and Consumption Problem

The assets are claims on capital of both countries, with returns RH,t+1 and RF,t+1. Investors

allocate their wealth between these two assets.13 Portfolio shares of Home investors in the

Home and Foreign assets are zH,t and 1− zH,t, while Foreign shares are zF,t and 1− zF,t. The

main assumption in this paper is that it is costly for investors to change these shares. This

key friction leads to more gradual portfolio adjustment to changes in expected returns.

More precisely, we assume a quadratic adjustment cost 0.5ψ(zh,t − zh,t−1)2 for country h

that reduces welfare.14 The parameter ψ determines the size of this portfolio friction. These

costs are associated with the decision process of choosing portfolio shares. They are not

transaction costs as investors can partly rebalance their portfolios. We will also examine

the case where rebalancing is costly by assuming a quadratic cost of deviating from the

buy-and-hold portfolio.

We focus the analysis on the average portfolio share in the Home asset: zAt = 0.5(zH,t +

zF,t). Changes in this average share affect net capital flows. Holding zAt fixed, changes in

zDt = zH,t − zF,t (a measure of home bias) only affect gross capital flows, not net capital

flows. The portfolio friction only affects zAt , not zDt .

We assume that investors have Rince preferences. This implies that the intertemporal

elasticity of substitution is 1, so that the optimal consumption-wealth ratio solely depends

on the time discount rate, while the rate of risk-aversion γ is a separate parameter that is

important for portfolio choice. The time discount rate, denoted βh,t for country h, is allowed

to vary over time and gives rise to saving shocks. The Bellman equation for investors from

country h is

ln(Vh,t) = max
Ch,t,zh,t

{
(1− βh,t) ln(Cn,t) + βh,t

[
ln
([
Et(Vh,t+1)

1−γ] 1
1−γ
)
− 0.5ψ(zh,t − zh,t−1)2

]}
.

(2)

The last term captures the cost of changing portfolio shares.

2.2 Budget Constraints and Financial Shocks

The financial wealth of investors from country h, Wh,t+1, evolves according to

Wh,t+1 = Rp,h
t+1 (Wh,t − Ch,t) , (3)

where Rp,h
t+1 is the portfolio return. Investors start period t with financial wealth Wh,t. They

consume Ch,t and invest the remainder in the two assets, on which they earn a return Rp,h
t+1

13Adding internationally traded bonds in fixed supply has little impact on the analysis.
14It is technically more convenient to assume that this cost affects directly utility, rather than reduce

resources in the budget constraint.
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from t to t+ 1. The portfolio return for Home and Foreign investors is

Rp,H
t+1 = zH,tRH,t+1 + (1− zH,t)e−τH,tRF,t+1 + TH,t+1 (4)

Rp,F
t+1 = zF,te

−τF,tRH,t+1 + (1− zF,t)RF,t+1 + TF,t+1. (5)

For Home investors, τH,t is a tax on the Foreign asset return. For Foreign investors, τF,t is

a tax on the Home asset return. These play two roles in the model. First, their mean τ

can be calibrated to generate realistic home bias. Second, time variation in τDt = τH,t − τF,t
generates exogenous portfolio shifts between Home and Foreign assets, which we will refer

to as financial shocks (latent asset demand or portfolio shocks).

While it is convenient to model them this way, in practice such financial shocks may be

driven by many factors. Examples from the literature include liquidity or noise trade (He and

Wang (1995)), hedge trade (Bacchetta and van Wincoop (2006), Spiegel and Subrahmanyam

(1992)), time-varying risk or risk-bearing capacity (Gabaix and Maggiori (2015)), time-

varying costs of investment abroad (Davis and van Wincoop (2018)) and time-varying private

investment opportunities (Wang (1994)). We will model them exogenously through τDt , while

not taking a stand on the most likely source(s) of these financial shocks in practice.

Finally, the terms TH,t+1 and TF,t+1 in (4)-(5) are lump-sum redistributions of the aggre-

gate portfolio taxes back to the investors. Agents take these as given, so they do not affect

portfolio choice. This means that in the aggregate

Rp,H
t+1 = zH,tRH,t+1 + (1− zH,t)RF,t+1 (6)

Rp,F
t+1 = zF,tRH,t+1 + (1− zF,t)RF,t+1, (7)

as if there were no taxes.

2.3 Optimal Portfolios

Investors maximize the right hand side of (2) subject to the wealth accumulation equation

(3) and portfolio return, (4) or (5). Consumption and portfolio Euler equations are de-

rived in Appendix A, where we follow an approximation approach similar to Campbell and

Viceira (1999) to obtain an explicit portfolio expression. The solution is as follows. The

consumption-wealth ratio is always 1 minus the discount rate:

Ch,t = (1− βh,t)Wh,t. (8)

Let rH,t+1 and rF,t+1 be the log Home and Foreign returns and ert+1 = rH,t+1 − rF,t+1

the excess return. The portfolio Euler equations then lead to the following second-order
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difference equations in portfolio shares:

βψEtzH,t+1 −
(
γσ2 + ψ(1 + β)

)
zH,t + ψzH,t−1 + Etert+1 + τH,t + νH = 0 (9)

βψEtzF,t+1 −
(
γσ2 + ψ(1 + β)

)
zF,t + ψzF,t−1 + Etert+1 − τF,t + νF = 0. (10)

Here β is the steady state time discount rate, σ2 is the variance of the excess return and

νH , νF are hedge terms that depend on second moments that we treat as constants (see

Appendix A).

Using (9)-(10), the expression of the average portfolio is (ignoring the constants)

βψEtz
A
t+1 −

(
γσ2 + ψ(1 + β)

)
zAt + ψzAt−1 + Etert+1 + 0.5τDt = 0. (11)

We will use this second-order difference equation of the average portfolio share to solve the

model, together with the other linearized equations of the model. But to gain intuition, it is

useful to solve the difference equation in order to get an explicit expression for the portfolio

share:

zAt = ηzAt−1 +
η

ψ

∞∑
s=1

(βη)s−1Et(ert+s) + 0.5λτDt , (12)

where

η =
γσ2 + β(1 + ψ)−

√
(γσ2 + β(1 + ψ))2 − 4βψ2

2βψ

λ =
η

ψ

1

1− ρτβη
.

Here we have assumed that τDt follows an AR process with AR coefficient ρτ .

The portfolio solution (12) has three terms. The first term shows that the optimal

portfolio share depends on the lagged portfolio share with a coefficient η. The weight η on

the lagged portfolio depends positively on the portfolio friction ψ. η is zero when ψ is zero

and approaches 1 as ψ → ∞. The second term shows that the optimal portfolio depends

on the present discounted value of all future expected excess returns. When ψ = 0, agents

only respond to the expected excess return over the next period, Etert+1. As a result of the

portfolio friction, agents adjust their portfolio today to changes in the expected excess return

beyond the next period as they wish to smooth portfolio changes over time. The discount

rate is βη, which implies a higher weight on expected excess returns further into the future

when ψ is larger.

Finally, the last term in (12) is related to financial shocks. A rise in τDt will lead to a
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portfolio shift from the Foreign to the Home asset. Define

ft = λτDt . (13)

∆ft is the total flow from the Foreign to the Home asset associated with changes in τDt ,

measured as a fraction of market value of either asset. To see this, we have ∆zH,t + ∆zF,t =

2∆zAt = λ∆τDt = ∆ft. This is the sum of the increase in demand for the Home asset by

investors from both countries as a fraction of their financial wealth, which in steady state

is equal to the value of both asset markets. We will measure the price impact of financial

shocks as the instantaneous increase in the relative log asset price, qDt = qH,t − qF,t relative

to ∆ft at the time of a shock to τDt . It tells us the percentage change in the relative price in

response to a 1 percent increase in demand for the Home asset. This price impact parameter

is called M :

M =
∆qDt
∆ft

. (14)

2.4 Asset Returns and Investment

The assets are claims on capital of both countries, with prices of respectively QH,t and QF,t

in the Home and Foreign country. The gross return in country h = H,F from t to t+ 1 is

Rh,t+1 =
Πh,t+1/Kh,t+1 + (1− δ)Qh,t+1

Qh,t

. (15)

Here Πh,t+1/Kh,t+1 is profits per unit of capital and δ is the rate of depreciation of capital:

Kh,t+1 = (1− δ)Kh,t + Ih,t, (16)

where Ih,t is investment.

Output is Cobb Douglas:

Yh,t = Ah,tK
θh,t
h,t N

1−θh,t
h,t . (17)

We allow for shocks to both productivity and the capital share, allowing profits to be more

volatile than output as in the data. Workers receive a fraction 1− θh,t of output, which they

consume. The rest goes to profits of the share holders:

Πh,t+1

Kh,t+1

= θh,t+1Ah,t+1K
θh,t+1−1
h,t+1 +

πh,t+1

Kh,t+1

. (18)

Here we have assumed that the labor supply is fixed at 1. The term πh,t+1 is profits of

installment firms, which investors get as well.
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Producing Ih,t capital goods requires

emh,t(Ih,t − δKh,t) + δKh,t + 0.5ζ
1

Kh,t

(Ih,t − δKh,t)
2 (19)

consumption goods. Installment firms at time t then maximize profits

πh,t = Qh,tIh,t − emh,t(Ih,t − δKh,t)− δKh,t − 0.5ζ
1

Kh,t

(Ih,t − δKh,t)
2 . (20)

Optimal investment takes the familiar Tobin Q form:

Ih,t
Kh,t

= δ +
1

ζ
(Qh,t − emh,t) . (21)

The variable mh,t will be time-varying, capturing exogenous investment shocks.

Substituting (21) back into (20), we obtain an expression for πh,t. Using this, the gross

return on the asset of country h can be written as

Rh,t+1 =
Dh,t+1 +Qh,t+1

Qh,t

, (22)

where the dividend Dh,t+1 is

Dh,t+1 = θh,t+1Ah,t+1K
θh,t+1−1
h,t+1 − δ +

1

2ζ
(Qh,t+1 − emh,t+1)2 . (23)

The last term will drop out after linearization, so that the dividend is equal to the marginal

product of capital net of depreciation.

2.5 Market Clearing Conditions

Agents in country h start period t with wealth Wh,t, of which they consume a fraction 1−βh,t.
They therefore invest βh,tWh,t in the two assets. The two asset market clearing conditions

are then

βH,tWH,tzH,t + βF,tWF,tzF,t = QH,tKH,t+1 (24)

βH,tWH,t(1− zH,t) + βF,tWF,t(1− zF,t) = QF,tKF,t+1. (25)

2.6 Shocks

Since the objective is to match quantitatively various aspects of the data, we introduce four

types of shocks: dividend, saving, investment, and financial shocks. The need for dividend
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shocks is clear as these are the payoffs of the assets. The introduction has already discussed

the importance of financial shocks. There are several reasons for introducing saving and

investment shocks. Without these shocks, saving and investment will generally be much less

volatile than in the data. Moreover, relative saving and investment would be too closely tied

to the relative log asset price qDt . As discussed further below, relative investment would be

a linear function of qDt , while relative saving would a linear function of qDt − dDt , where dDt is

the relative log dividend.

Dividend shocks are related to both productivity shocks and capital share shocks. Assume

Ah,t = Āeah,t , where Ā is the steady state value of productivity. We introduce average and

relative shocks, defining in all cases xAt = 0.5(xH,t + xF,t) and xDt = xH,t − xF,t. For average

and relative productivity shocks we then have

aAt+1 = ρaa
A
t + εA,at+1 (26)

aDt+1 = ρaa
D
t + εD,at+1. (27)

The two innovations have standard deviations of respectively σA,a and σD,a and are uncor-

related.

Analogously, for capital share shocks we have

θAt+1 − θ = ρθ
(
θAt − θ

)
+ εA,θt+1 (28)

θDt+1 = ρθθ
D
t + εD,θt+1, (29)

where θ is the mean. The two innovations have standard deviations of respectively σA,θ and

σD,θ and are uncorrelated.

To see how these shocks together affect dividends, the log-linearized dividend (see Ap-

pendix B) is

dh,t =
1− β + δβ

1− β

(
ah,t +

1

θ
θh,t + (θ − 1)kh,t

)
, (30)

where kh,t is the log capital stock.

Saving shocks are associated with changes in the time discount rate. We have

βAt+1 − β = ρβ
(
βAt − β

)
+ εA,βt+1 (31)

βDt+1 = ρββ
D
t + εD,βt+1 . (32)

The two innovations have standard deviations of respectively σA,β and σD,β and are uncor-

related.
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Investment shocks are shocks to the Tobin-Q relationship (21):

mA
t+1 = ρmm

A
t + εA,mt+1 (33)

mD
t+1 = ρmm

D
t + εD,mt+1 . (34)

The shocks have standard deviations of respectively σA,m and σD,m and are uncorrelated.

Finally, financial shocks are given by

τDt+1 = ρττ
D
t + ετt+1. (35)

The standard deviation of the shock is στ . We do not introduce shocks to τAt as such shocks

do not affect net capital flows or any of the other variables of interest. They only affect gross

capital flows. We assume that all shocks in the model are mutually uncorrelated.

2.7 Equilibrium

With the exception of portfolio Euler equations, we linearize around the deterministic steady

state. Since a deterministic steady state does not exist for portfolios, we use an approach

analogous to Campbell and Viceira (1999) to obtain the linear optimal portfolio expressions

(9)-(10). Appendix B derives the full log-linearized system of equations.15

One can consider two sets of equations. One set involves differences of variables, jointly

with zAt . The second set involves averages of variables, jointly with zDt . The system in

averages is easy to solve by hand and leads to the solution for the average log asset price qAt
discussed in Appendix B. The system in differences is more involved and leads to a solution

for the relative log asset price qDt as a function of the following state variables:

St =
(
qDt−1, w

D
t−1, k

D
t−1, τ

D
t , θ

D
t , a

D
t , β

D
t , β

D
t−1,m

D
t ,m

D
t−1
)′
. (36)

We discuss this system in differences and solution in more detail in the Online Appendix.

One of the parameters of the model, the variance σ2 of the excess return, is endogenous.

We solve the model for a given σ, which enters the portfolio expressions, and then solve a

fixed-point problem that equates the assumed σ to that implied by the equilibrium of the

model.

15There is an ergodic distribution for relative wealth in this linearized system, even though we do not
introduce features such as Uzawa preferences or finite lives. To see this, consider what happens when Home
wealth is larger than Foreign wealth. As a result of home bias, this raises relative demand for Home assets.
This raises the relative Home capital stock and asset price, which lowers the expected excess return on the
Home asset. This in turn reduces the expected future portfolio return of Home relative to Foreign investors
and therefore relative Home wealth.
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2.8 Saving, Investment and Net Capital Flows

The current account equals net saving minus net investment: CAh,t = Sneth,t − Ineth,t . This can

also be written in terms of relative saving and investment. Omitting the country subscript,

the current account of the Home country is CAt = 0.5SD,nett − 0.5ID,nett . In equilibrium

this must be equal to net capital outflows of the Home country, which we denote as NFt.

The equation CAt = NFt can be thought of as an equilibrium equation that determines the

relative asset price qDt . The difference between the two market clearing conditions (24) and

(25) leads to the same equation, but writing it as CAt = NFt helps provide intuition.

Appendix C shows that relative net saving is equal to

SD,nett =
βDt
β

+ (1− β)(2z̄ − 1)
(
dDt − qDt

)
. (37)

Here z̄ is the steady state share invested domestically and dDt = dH,t− dF,t is the relative log

dividend.

Relative net investment is

ID,nett =
1

ζ

(
qDt −mD

t

)
. (38)

The current account is a negative function of qDt : a rise in qDt raises relative Home invest-

ment through the Tobin-Q relationship, while lowering relative Home saving. To understand

the latter, a rise in qDt raises relative Home wealth as long as there is home bias (z̄ > 0.5).

This raises relative Home consumption and therefore lowers relative Home saving.

Net capital outflows can be written as

NFt = −2∆zAt + 2z̄(1− z̄)∆qDt + (1− z̄)SD,nett . (39)

The three terms on the right determine net capital outflows from a portfolio perspective.

The first term is related to portfolio reallocation. An increase in the share allocated to

Foreign assets, which implies ∆zAt < 0, leads to capital outflows. The second term relates to

portfolio rebalancing. A higher relative price of the Home asset leads to a net purchase of

Foreign assets for portfolio balancing reasons, implying net capital outflows. Finally, the last

term is a portfolio growth term. Higher relative Home saving raises capital outflows relative

to inflows associated with portfolio growth. A higher relative Home price will usually raise

the first two terms, while slightly lowering the last. It tends to lower the expected excess

return on the Home asset, lowering zAt . It also raises net outflows due to rebalancing.

Consider a shock that for unchanged qDt implies CAt > NFt, such as a positive saving

shock or a negative investment shock, which increases CAt, or a financial shock that leads

to a portfolio shift towards the Home asset, which decreases NFt. An increase in qDt then
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re-establishes equilibrium through several channels: lower relative saving, higher relative

investment (both lowering CAt), a higher expected excess return on the Foreign asset and

portfolio rebalancing towards the Foreign asset (both raising NFt). The impact of shocks

on net capital flows will depend on the relative importance of these adjustment mechanisms,

especially on the sensitivity of net capital outflows NFt to qDt relative to the sensitivity of

the current account CAt to qDt .

3 Data and Calibration

3.1 Data

We use quarterly data from 1980 through 2018 to compute data moments and calibrate

parameters. The Home country is the United States, while the Foreign country is a GDP-

weighted average of the remaining G7 countries. For real GDP, net saving, and net in-

vestment we use OECD Quarterly National Accounts data. Net saving and net investment

are not available at the quarterly frequency for all non-U.S. G7 countries, so we compute

the volatility and autocorrelations of saving and investment only for the US. As discussed

below, for the calibration of one parameter we use both Home and Foreign net saving and

investment rates, for which we use annual data from the OECD Annual National Accounts.

The current account is the US current account from the IMF Balance of Payment Statistics

and is scaled by GDP from the OECD Quarterly National Accounts.

As in the model, dividends are defined as profits divided by the capital stock. Using

OECD Quarterly National Accounts data, we construct the profit measure as net operating

surplus plus the capital share of mixed income.16 A quarterly capital stock measure is

obtained by combining annual capital stock data from Penn World Table 10.0 with the

quarterly gross investment series from the OECD Quarterly National Accounts, assuming a

quarterly depreciation rate of 0.015. Given data limitations for our profit measure, we use a

shorter quarterly dataset from 1995 to 2018 for the US and the non-US G7.17 These same

data are also used to calibrate the processes for the capital share and productivity. The

capital share is profits as defined above, divided by GDP minus net production taxes. It is

available from 1995 to 2018. The Solow residual is real GDP divided by K
θh,t
h,t N

1−θh,t
h,t , where

16Mixed income is an income flow to proprietors that includes both capital and labor income. As in
Cooley and Prescott (1995) and Gomme and Rupert (2007), we assume the labor share of mixed income is
equal to the share of employee compensation in unambiguous capital and labor income, that is, employee
compensation plus gross operating surplus. Details can be found in the Online Appendix, Section C.

17The OECD quarterly data report the sum of net operating surplus and mixed income. To attribute an
appropriate share of mixed income to profits, we first use data from the OECD Annual National Accounts to
obtain an estimate of the share that is mixed income. Then, we apply the share of mixed income to profits
that is equal one minus the labor share outlined above (see the Online Appendix, Section C for details).
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Nh,t is Total Employment from OECD Main Economic Indicators. The productivity series

is available from 1980 to 2018.

We construct a measure of the excess return to compute its standard deviation σ and

autocorrelation. The return to capital in our model is a broad return to productive capital.

We first compute a weighted average of equity and corporate bond returns. Equity returns are

computed from the quarterly change in MSCI Total Return Index in US dollars. Corporate

bond quarterly holding period returns are computed using data on corporate bond yields

from the Global Financial Database.18 We weigh equity and bond returns by their respective

shares of total market capitalization. Stock market capitalization is taken from the World

Bank’s Global Financial Development data. Corporate bond market capitalization is the

total amount outstanding from non-financial corporate and non-corporate issuers from the

Bank of International Settlements Debt Securities Statistics.

Based on US Flow of Funds data from 1980 to 2018, we find that equity and corpo-

rate bonds account on average for 51 percent of the liabilities of non-financial corporations

and non-corporations. The remainder are mostly safe assets such as bank loans and trade

payables, for which the interest rate is known in advance. In order to reflect this in our

broader return measure, we therefore approximate σ as the standard deviation of the excess

return based on equity plus corporate bonds, scaled down by a factor 0.51. Further details

regarding the data can be found in Online Appendix C.

3.2 Calibration

Some parameters are adopted from the literature, while others are based on direct measure-

ment in the data or targeting moments in the data. While we conduct sensitivity analysis,

for most of the results risk aversion γ is set at 10. It is adopted from Bacchetta and van

Wincoop (2010), who use a model of gradual portfolio adjustment to account for the forward

discount puzzle. The steady state time discount rate is set at β = 0.99, implying a 4 percent

interest rate in the deterministic steady state. The mean capital share θ is set at 0.362,

based on US data from 1980 to 2018 discussed above. The quarterly depreciation rate δ is

set to 1.5 percent or 6 percent annually. This is computed using US data on consumption

of fixed capital as a share of the capital stock.

The steady state portfolio share z̄ invested domestically is technically not a parameter of

the model, but the mean tax rate τ can be adjusted to obtain any z̄. We calibrate it based on

data from Bertaut and Tryon (2007), whose sample we extend from 1994 to 2015. One minus

18As in Gourinchas and Rey (2007), we compute holding period returns from changes in bond yields using
Eq. 10.1.19 in Campbell, Lo and MacKinlay (1997, p. 408), assuming that coupons are equal to yields and
an average maturity of 10 years. The moments for the excess return measure were virtually identical using a
zero coupon assumption with average duration of 10 years. See the Online Appendix, Section C for further
details.
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z̄ is set equal to US external claims in stocks and bonds in the non-US G7, divided by total

equity, debt and mutual fund assets of US households from the U.S. Financial Accounts,

averaged over quarterly data from 1994 through 2015.19

The AR coefficients ρa and ρθ of productivity and the capital share are based on data

for the Solow residual and capital share discussed above. For productivity we first remove a

linear trend. The AR coefficients are the average of those estimated for the US and non-US

G7. Using the resulting innovations for the US and non-US G7, we compute the standard

deviation of the average and relative innovations for productivity shocks and capital share

shocks, σA,a, σD,a, σA,θ and σD,θ.

The parameters στ , ζ, σD,β, σD,m/ζ, and σA,β/σD,β = σA,m/σD,m are jointly set to match

five moments in the data. Their values in Table 1 are based on ψ = 1, which we refer to as

the benchmark. But we also consider ψ = 0 and ψ = 3 and these parameters will change as

we vary ψ. The model moments are average moments over 1000 simulations over the same

sample length as in the data. While the parameters are set jointly to target five moments,

we have in mind a specific target moment for each parameter. The target moment for στ

is σ. As we will see, financial shocks are a dominant driver of the relative asset price and

therefore the excess return. σD,β is used to target the standard deviation of the saving rate.

A lower ζ and higher σD,m/ζ raise investment volatility, while higher values of both

parameters reduce the explanatory power of Tobin’s Q in investment volatility. We target

them to match US investment volatility (Inett /Yt) together with the R2 of a regression of ∆It

on ∆qt. In the data, the latter is based on Andrei, Mann and Moyen (2019) using aggregate

US data for investment and Tobin’s Q from 1975 to 2015. Tobin’s Q can on average account

for 25 percent of the variance of changes in the investment rate.

The ratios σA,β/σD,β and σA,m/σD,m are higher the more correlated saving and investment

shocks are across countries. We use them to match corr(∆[SH,t/YH,t],∆[SF,t/YF,t]) and

corr(∆[IH,t/YH,t],∆[IF,t/YF,t]) in the data. Since we are unable to match both of these

correlations exactly, and the saving and investment correlations are close to each other

(respectively 0.42 and 0.47), we set σA,β/σD,β = σA,m/σD,m to match the average of the

cross-country correlations of changes in saving and investment rates. As discussed above, in

both the data and model these are based on annual data from 1980 to 2018.

The AR coefficients ρβ and ρm of saving and investment shocks are both set at 0.99.

Setting them much lower leads to autocorrelations of saving and investment rates that are

too low relative to the data. Finally, the AR coefficient ρτ of financial shocks is also set at

0.99. We will discuss higher and lower values as well in sensitivity analysis. The problem

with less persistent financial shocks is that it can significantly reduce the price impact of

19To make the external claims to non-US G7 comparable to the total equity and debt portfolio of US
residents (which includes non-G7 assets), we scale the claims on stocks and bonds in the non-US G7 by
dividing by their share in total external claims in stock and bonds of the US.
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financial shocks.

4 Results

We are interested in the impact of the portfolio friction, particularly on the relative asset

price and net capital flows. We first address this by considering three values of ψ, while at

the same time adjusting other parameters to match targeted moments, as discussed above.20

This is intended to give each value of ψ the best chance, which allows us to address for

what value of ψ the model is most consistent with the data. After that we consider the

effect of changing the friction ψ while holding other parameters constant. This allows us

to address the impact of the friction on the equilibrium relative price and net capital flows.

In both cases we consider the implications for model moments, the impulse response of the

relative price and net capital flows to shocks and the contribution of each of the shocks to

the variance of the relative price and net capital flows.

We finish with some robustness analysis. We consider the results when the portfolio

friction takes the form of a quadratic cost of deviating from the buy-and-hold portfolio

instead of the lagged portfolio. This means that there is a cost to any asset trade, including

trade associated with portfolio rebalancing. We also consider alternative assumptions about

the rate of relative risk aversion and persistence of the financial shock.

4.1 Three Values of the Portfolio Friction

We present results for three values of the portfolio friction: ψ = 0, ψ = 1 and ψ = 3.

In each case the parameters στ , ζ, σD,β, σD,m and σA,β/σD,β = σA,m/σD,m are changed

to target 5 moments, as discussed above. In computing the moments, we simulate the

model 1000 times over 260 quarters. The moments are computed over the last 160 quarters,

corresponding to the data sample from 1980 to 2018. The parameters are chosen such that for

the targeted moments the average of the model moments over the 1000 simulations matches

the corresponding moments in the data.

4.1.1 Benchmark Case: ψ = 1

We first consider the benchmark case of ψ = 1, for which all parameters are shown in Table

1. To get some sense of how realistic this case is, in the portfolio solution (12) the weight

on the lagged portfolio is η = 0.92. This is more meaningful if we relate it to a frequency p

of portfolio adjustment. There is an analogy between a quadratic portfolio adjustment cost

and a Calvo setup where investors change their portfolio with probability p. Bacchetta et al.

20Online Appendix D reports these other parameters for all cases that we will consider.
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(2021) obtain a similar portfolio expression to (12) when adopting the Calvo friction. Then

the coefficient on the lagged portfolio is 1 − p. For a quarterly frequency, this means that

the probability of not making a new portfolio decision over an entire year is (1− p)4. With

1− p = η = 0.92, this means that approximately 70 percent of investors do not make a new

portfolio decision during the course of one year. To put this in perspective, the Investment

Company Institute reports that about 60 percent of US investors make no changes to their

stock or mutual fund portfolio during any particular year.21 This is not too far off from the

70 percent implied by ψ = 1, especially when taking into account that some of the reported

transactions are for rebalancing purposes as opposed to a change in portfolio allocation.22

We first consider a set of moments implied by ψ = 1, shown in column (ii) of Table

2. Average model moments and the standard errors are shown, with targeted moments in

italics. Data moments are shown in the first column. We consider standard deviations for five

variables: excess return, saving rate, investment rate, net capital outflows (current account)

as a fraction of GDP and relative output growth. Four autocorrelations are included: excess

return, saving rate, investment rate and net capital outflows as a fraction of GDP. Four

contemporaneous correlations are considered: the time series correlation between saving and

investment rates, the correlation between the current account and output growth (cyclicality

of the current account), the correlation between Home and Foreign asset price changes and

between the relative asset price change and the relative dividend change.

The three “other” moments at the bottom of Table 2 are the R2 of a regression of the

change in the relative investment rate on the change in Tobin’s Q, the size of a one standard

deviation financial shock (στλ) and the parameter M that measures the price impact of

financial shocks given in (14). No direct data measurement for the last two moments exists.

The model does a good job accounting for all of the data moments when ψ = 1. All

non-targeted moments are close to those in the data. The model is also consistent with a

variety of other stylized facts documented in the literature. The first is the fact that asset

prices are mostly driven by financial shocks (e.g. Koijen and Yogo (2019) for equity and

Itskhoki and Muhkin (2021) for exchange rates) and therefore disconnected from observed

fundamentals like dividends. Table 3 reports the contribution of the shocks to the variance

of the excess return and net capital flows, with column (ii) reporting results for the ψ = 1

case. We see that 91 percent of the variance of the excess return is driven by financial shocks.

This is also evident from Figure 1, which shows impulse response functions for one standard

deviation shocks. Financial shocks are clearly the dominant driver of the relative asset price.

21In the year 2001, 60 percent made no change (Equity Ownership of America, 2002). In the year 2007,
57 percent made no change (Equity and Bond Ownership of America, 2008).

22Specifically, 55 percent of those conducting transactions in 2007 reported rebalancing as a reason. But
on average respondents gave 3 to 4 reasons for conducting transactions. We do not know what fraction
exclusively conducted transactions for rebalancing purposes.
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The large role of financial shocks is a result of a large price impact parameter M of 1.5

in the last row of Table 2. It is somewhat lower than the price impact of 5 estimated for the

equity market by Gabaix and Koijen (2020) through Granual Instrumental Variables (GIV).

But that is as expected as the assets in this paper are broader claims on capital that are less

risky. Lower risk leads to a stronger portfolio response to expected returns, which reduces

the price impact. As we will see, a price impact of 1.5 is a substantial order of magnitude

larger than in the frictionless case.

The literature has also documented extensive evidence in a broad set of financial markets

of excess return momentum and reversal. For example, Moskowitz et al. (2012) document

momentum and reversal in commodity, equity, currency and bond markets. They show

that excess returns are positively correlated with their own lag up to about 12 months

(momentum), while they are negatively autocorrelated for longer lags (reversal).23 The

model with ψ = 1 is consistent with both momentum and reversal. It generates a positive

autocorrelation of the excess return of 0.15 (Table 2), close to that in the data. In response

to financial shocks the relative price continues to go up for two additional quarters after the

initial shock (Figure 2, panel A), which generates a positive autocorrelation of the excess

return. After that it starts to fall (negative excess returns), consistent with reversal.24

The model is also in agreement with a significant literature on post-earnings announce-

ment drift (see Fink (2021) for a recent review), which says that stock prices continue to rise

for months or quarters subsequent to a positive earnings announcement. Panel C of Figure 1

shows that a positive productivity or capital share shock, which both raise dividends, leads

to a continued rise in the relative price for an additional quarter after the shock.

We can conclude that the model is consistent with a broad set of evidence related to asset

prices.25 Taking the case of ψ = 1 seriously, we can use the variance decomposition in Table

23See also Jegadeesh and Titman (1993), Lim et al. (2018), Chan et al. (1997) and Cutler et al. (1991)
for evidence of momentum and De Bondt and Thaler (1985), Fama and French (1998) and Poterba and
Summers (1988) for evidence of reversal.

24To establish evidence of momentum and reversal, the literature has used evidence on many firms,
commodities and currencies. In this paper we only have a time series for one relative price (US rela-
tive to the rest of the G7), which is not sufficient. When we use the relative price of each of the six
non-US G7 countries relative to the US, we find marginal evidence of momentum. The pooled regression

qD,i
t+1 − q

D,i
t = a0 + a1

(
qD,i
t − qD,i

t−1

)
, where qD,i is the log price of country i relative to the US, delivers a

coefficient a1 = 0.0663 with a t-value of 1.67.
25We should also point out that the welfare cost associated with the portfolio adjustment cost

is very small. Appendix A shows that Vh,t = Wh,te
fh,t , where fh,t follows the difference

equation (A.16) in Appendix A. Linearizing and solving the difference equation, we get fh,t =∑∞
s=0 β

s+1
(
Etr

p,H
t+s+1 − 0.5ψ(zh,t+s − zh,t+s−1)2)

)
. Using the same 1000 simulations of 260 quarters, for

each simulation we can compute the sum on the right hand side and determine how much fh,t is reduced
by the quadratic portfolio cost term. We take the expectation by averaging across the simulations, although
the results do not vary substantially across simulations. fh,t is reduced by 0.0012 as a result of the portfolio
friction. This implies a welfare cost of 0.12 percent of wealth (and therefore consumption).
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3 and impulse response functions in Figure 1 to draw conclusions regarding the impact of

the various shocks on the relative price and net capital flows. Productivity and capital share

shocks are very similar as they both affect dividends. Together they are simply referred to as

dividend shocks in Table 3. Investment shocks are also similar to dividend shocks in terms

of the impact on the relative price, which operates largely through the effect on relative

dividends. A rise in mD
t lowers relative Home investment, which lowers the relative Home

capital stock, which raises the relative Home dividend.26

In terms of the relative price, we have already noted that financial shocks dominate. The

impact of saving shocks is nil, while investment and dividend shocks together account for

about 10 percent of the variance of the excess return. Saving shocks raise the left-hand side

of the equilibrium condition S − I = NF , while financial shocks lower the right-hand side.

The reason that saving shocks have a much smaller effect on the relative price than financial

shocks is that they are very small as a fraction of the entire financial market. The other

shocks affect dividends, which affect the expected excess return and therefore NF . Even

with the portfolio friction, this perturbs the equilibrium condition S − I = NF more than

saving shocks, though much less than financial shocks.

Table 3 shows that net capital flows are dominated by financial shocks and saving shocks.

They each account for about 47 percent of the variance of net capital flows. Financial shocks

affect net capital flows through the relative price, which affects relative investment through

the Tobin Q relationship and relative saving through its impact on relative wealth and

therefore relative consumption. As discussed, the link between investment and Tobin Q

is calibrated to be realistic, while the marginal propensity to consume out of wealth of 4

percent per year in the model is also within the range of estimates in the literature.

Saving shocks also have a significant effect on net capital flows. Since they have very little

effect on the relative price, there is limited feedback from the relative asset price change back

to saving and investment. Therefore a rise in Home saving corresponds to capital outflows

of virtually the same magnitude. This is not the case for an investment shock, which affects

dividends and therefore requires a larger price adjustment that mitigates the impact on

equilibrium net capital flows.

4.1.2 Larger Portfolio Friction: ψ = 3

We now consider a larger friction of ψ = 3. This implies η = 0.957. Drawing again an

analogy to a Calvo type portfolio friction, it implies that about 84 percent of investors make

no portfolio change during the course of a year. This is a bit on the high side given the 60

percent of investors that make no change to their stock or mutual fund portfolios. However,

26The lower relative Home capital stock also raises the relative price through a supply effect. But this is
weaker than its effect through the relative dividend.
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we cannot dismiss it outright. As discussed in the introduction, 90 percent of investors make

no change to their retirement portfolio during a given year.

With one exception, the model with ψ = 3 does a good job in matching the non-targeted

moments in Table 2 (see column (iii)). The exception is the autocorrelation of the excess

return. It is 0.35, which is more than three standard deviations above the data. As we

raise ψ, portfolios adjust more gradually, which gives rise to a more gradual adjustment of

asset prices in response to shocks, leading to a higher autocorrelation of the excess return.

With ψ = 3 there is stronger momentum. Figure 2, which shows impulse responses when

ψ = 3, shows that the excess return continues to rise for three more quarters after a positive

financial shock. There is also significant post-earnings announcement drift as the relative

price continues to rise for several quarters after a positive dividend shock (through either

productivity or the capital share).

Both from evidence on the frequency of portfolio changes and the extent of momentum

implied by ψ = 3, it appears that this level of the friction is a bit too high to be consistent

with the data. Not surprisingly, the higher portfolio friction implies a larger price impact of

M = 2.2, requiring smaller financial shocks to be consistent with the data (see bottom of

Table 2, column (iii)).

4.1.3 Frictionless Case: ψ = 0

Column (i) of Table 2 reports model moments without any portfolio friction (ψ = 0). At

first it looks like the model performs well without any portfolio friction. However, this only

occurs as a result of massive financial shocks. The size of a one standard deviation financial

shock (second row from bottom) is 0.21. This corresponds to an exogenous portfolio shift

that leads to a change in demand for the Home asset equal to 21 percent of the entire Home

financial market during just one quarter. By contrast, the financial shock is only 1.7 percent

of the market when ψ = 1 and 1.1 percent when ψ = 3.

The reason that such a large financial shock is needed without the portfolio friction is

that financial shocks have little price impact. Without portfolio frictions, portfolios are

very sensitive to changes in expected returns. A financial shock is therefore easily absorbed

through a small change in the expected excess return that involves a very small change

in the relative asset price. We are then unable to account for the observed volatility of the

excess return, and the low correlation between the relative price change and relative dividend

change, unless financial shocks are massive in size.

The last row of Table 2 reports a price impact of M = 0.12 when ψ = 0. This means that

the relative price rises only 0.12 percent in response to a 1 percent portfolio shift towards the

Home market. This is a factor 16 smaller than when ψ = 1 and a factor 19 smaller compared

to ψ = 3. The price impact with frictions is much closer to what Gabaix and Koijen (2020)
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estimate for the equity market.

The frictionless case also does not produce any excess return momentum and reversal

or post-earnings announcement drift. Figure 3 shows impulse responses when ψ = 0. In

response to financial shocks and both types of dividend shocks, the relative price gradually

drops over time after its increase at the time of the shock. Even if we made the rate of

relative risk aversion very high, which would increase the price impact of financial shocks,

this lack of momentum would remain. It explains why the excess return is slightly negatively

autocorrelated in Table 2 when ψ = 0. Introducing other features that raise the price impact

of financial shocks, such as segmented markets or disaster risk, are analogous to simply raising

risk aversion and therefore would not generate asset price momentum or reversal.

Table 3 shows that it remains the case that close to 90 percent of the variance of the

relative price is driven by financial shocks, while financial and saving shocks dominate net

capital flows. However, this happens only because we adjust the size of financial shocks to

an implausible level.

To summarize, the model best describes the data for an intermediate value of the portfolio

friction. Without the friction, implausibly large financial shocks are needed and there is no

asset price momentum, reversal or post-earnings announcement drift. When the friction is

too large, there is too much momentum. The autocorrelation of the excess return becomes

too large.

4.2 Impact of Change in Portfolio Friction

So far we changed five other parameters when changing the portfolio friction, targeting

several moments. We now hold the other parameters constant in order to see the impact of

changing the portfolio friction by itself. Specifically, we hold other parameters constant at

their level for the ψ = 1 case, shown in Table 1 and corresponding to column (ii) of Table

2. We only adjust στ in order to keep the size of a one standard deviation financial shock

constant as we change ψ. Another way to put this is that we hold constant the process of the

portfolio shift variable ft = λτDt in (12). The purpose of this exercise is purely to understand

what the friction does in the model. It is not reasonable to compare the performance of the

model across these cases as we only target key moments in the ψ = 1 case.

For all three values of ψ, Figure 4 reports the impulse response functions of the relative

price and net capital flows to one standard deviation shocks. Chart A of Figure 4 shows

that the impact of financial shocks on the relative price is enormously affected by the level

of ψ. The impact is much larger with ψ = 1 than ψ = 0 and much larger when ψ = 3 than

ψ = 1. This is as expected as a larger portfolio friction implies a weaker portfolio response to

changes in expected returns, requiring larger relative price changes to generate equilibrium

in response to a financial shocks. Panel B of Figure 4 shows that the impact of financial
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shocks on net capital flows is also much larger as we raise ψ. This is again because both

relative saving and investment are linked to the relative price.

These results are also reflected in Tables 2 and 3, where columns (iv) and (v) report

results for ψ = 0 and ψ = 3 when holding the other parameters constant at the level for

ψ = 1. Consistent with the impulse response functions, Table 3 shows that the contribution

of financial shocks to the variance of the relative price and net capital flows are both nil when

we lower ψ to zero. By contrast, when we raise ψ to 3, the large price impact of financial

shocks implies that they account for 99 percent of the variance of the relative price and 91

percent of the variance of net capital flows. Table 2 shows that lowering ψ to 0 reduces the

standard deviation of the excess return to about one third of that in the data, while raising

ψ to 3 raises the volatility of the excess return to more than twice that in the data. This is

all related to the much larger impact of financial shocks as we raise the portfolio friction.

The portfolio friction also affects the response to the other shocks. First consider the

relative price. Similar to financial shocks, panel C of Figure 4 shows that the price impact

of saving shocks is larger when the portfolio friction increases. Conversely, panels E and G

show that the price impact of the other shocks is weaker as ψ increases. We do not show

productivity shocks as the impact is similar to capital share shocks, both affecting relative

dividends.

Just like financial shocks, saving shocks require a larger change in the relative price to

equate S − I to NF when ψ rises as the portfolio share is less sensitive to expected excess

returns. However, even for large ψ the price effect remains small since saving shocks are small

relative to the overall financial market. The other shocks, including investment shocks, affect

the relative price largely through their effect on relative dividends. The larger ψ, the smaller

the portfolio response to a change in expected relative dividends (which affect the excess

return), leading to a smaller initial price effect.

Next, consider net capital flows. The response of net capital flows to saving shocks is

affected only to a small extent by the friction. This is due to the small price impact of

saving shocks, even with the friction, leading to limited feedback to saving and investment

and therefore net capital flows. The response of net capital flows to dividend and investment

shocks is increased under a higher portfolio friction. Investment shocks and capital share

shocks both lead to net capital outflows. For investment shocks, a rise in mD
t lowers relative

Home investment, giving rise to a positive current account (net outflows). For capital share

shocks, a rise in θDt raises the relative Home dividend, which raises relative Home saving,

also generating net outflows. The increase in the relative price for both shocks lowers saving

and raises investment, which dampens the size of net outflows. Higher portfolio frictions

weaken the initial price impact, leading to larger equilibrium net outflows.

Overall we can conclude that the size of net capital flows is increased when we raise the
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portfolio friction. A smaller friction leads to smaller net capital flows. Only for saving shocks

does the friction not matter much. This means that the relative importance of saving shocks

for net capital flows increases as we lower the friction and falls as we raise the friction. We

see in Table 3, column (iv), that lowering ψ to zero raises the contribution of saving shocks

to the variance of net capital flows to 91 percent. By contrast, raising ψ to 3 (column (v)

of Table 3), saving shocks account for only 8 percent of the variance of net capital flows and

financial shocks account for 91 percent.

4.3 Robustness Analysis

We consider two types of robustness analysis. We first introduce a buy-and-hold portfolio

friction, where there is a quadratic cost of deviating from the buy-and-hold portfolio instead

of the lagged portfolio. After that, we consider how results change for different values of the

rate of risk aversion γ and persistence ρτ of financial shocks.

4.3.1 Buy-and-Hold Portfolio Friction

We have so far assumed that the portfolio friction takes the form

ψ(zh,t − zh,t−1)2.

We now replace this with

ψ(zh,t − zbhh,t)2,

where zbhh,t is the buy-and-hold portfolio. This is the portfolio at time t if investors do not

buy or sell any assets. In this case there is a cost associated with any asset trade, even if it is

just for the purpose of portfolio rebalancing. A higher friction will now reduce the extent of

portfolio rebalancing, which further weakens the response of net capital flows NF to changes

in the relative asset price.

The buy-and-hold portfolio is equal to

zbhh,t =
zh,t−1

QH,t
QH,t−1

zh,t−1
QH,t
QH,t−1

+ (1− zh,t−1) QF,t
QF,t−1

. (40)

Linearizing, we have

zbhh,t = zh,t−1 + z̄(1− z̄)∆qDt . (41)

We therefore modify the Bellman equation (2) by replacing the portfolio cost ψ(zh,t−zh,t−1)2

with

ψ
(
zh,t − zh,t−1 − z̄(1− z̄)∆qDt

)2
. (42)
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We leave all algebraic details of this extension to the Online Appendix.

Columns (vi) and (vii) of Table 2 report the model moments when ψ = 1 and ψ = 3.

Obviously there is no impact for the frictionless case of ψ = 0. We again change other

parameters to target five moments. We can compare to columns (ii) and (iii), where there is

a quadratic cost in deviation from the lagged portfolio. A couple of points stand out. First,

the size of the financial shock (near the bottom of the table) is now even smaller. When

ψ = 3, a one standard deviation financial shock is now only 0.75 percent of the Home asset

market (versus 1.1 percent before). A smaller financial shock is needed as asset prices are

now even more sensitive to financial shocks. This is due to weaker portfolio rebalancing.

Related to that, the price impact parameter M at the very bottom of the Table is now 3.2

when ψ = 3, compared to 2.2 before.

The other significant difference is that the autocorrelation of the excess return is now

-0.005 for both ψ = 1 and ψ = 3. This is especially remarkable for ψ = 3, where the

autocorrelation of the excess return was too high with a cost of deviating from the lagged

portfolio. This is no longer a problem with the buy-and-hold friction. The autocorrelation is

within two standard errors of the data and if anything is on the low side. There is no longer

asset price momentum.

When the portfolio cost relates to a deviation from the lagged portfolio, investors will

change their portfolio gradually. This leads to a more gradual response of the relative price

to shocks, as clearly seen in the humped shaped price response to financial shocks in panel A

of Figure 2 and in panel C for dividend shocks. This gives rise to a positive autocorrelation

of the excess return. We find that this is no longer the case when the portfolio cost relates to

a deviation from the buy-and-hold portfolio. For all shocks, when the price rises at the time

of the shock, it will subsequently slowly fall. This accounts for the lower, and even slightly

negative, autocorrelation of the excess return.

To understand the difference, consider a financial shock that leads to a persistent flow

into the Home market. With a cost of deviating from the lagged portfolio, portfolio rebal-

ancing is critical to generating equilibrium. As the price gradually increases, the expected

excess return is initially positive. This leads to an even larger flow into the Home market.

Equilibrium is established as investors sell the Home asset for portfolio rebalancing reasons.

But the buy-and-hold portfolio friction significantly weakens portfolio rebalancing. Then

equilibrium needs to be established through a lower expected excess return on the Home

asset that leads investors to sell the Home asset. This means that the relative price must

slowly drop after the initial increase, which is exactly what happens.

In reality both types of portfolio costs are likely to be important. We could introduce

an intermediate case where there is both a cost of deviating from the lagged portfolio and

the buy-and-hold portfolio. Bacchetta, Tièche and van Wincoop (2020) provide evidence
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that both of these costs are positive when considering global portfolios of US equity mutual

funds.

4.3.2 Sensitivity Analysis

We finally consider the sensitivity of results to two important parameters, γ and ρτ . We find

that when we redo the first three columns of Table 2 for different values of these parameters,

the moments do not change significantly, as long as we keep adjusting the other parameters

to match the targeted moments. However, what does change significantly is the size of

financial shocks needed to match these moments and the price impact parameter M (bottom

two rows of Table 2). Table 4 reports these two variables for alternative values of γ and ρτ .

For comparison, it shows the baseline results as well, where γ = 10 and ρτ = 0.99.

We first raise γ to 100. That is clearly excessively large, but is meant to illustrate an

alternative way to weaken the portfolio response to expected returns, even without portfolio

frictions.27 As a result, the size of financial shocks needed to account for the data is smaller

and the price impact parameter M is much larger. But we can see from Table 4 that even

with γ = 100, M remains much smaller than under the baseline with the portfolio friction.

In fact, no matter how much we raise risk aversion in the frictionless case, we never match

the level of M when either ψ = 1 or ψ = 3 and γ = 10. Even if we set γ equal to infinity

in the frictionless case, so that we completely shut down the portfolio response to expected

returns, the price impact is still substantially larger with the friction. This is because with

the friction a financial shock leads to a hump-shaped price response. Initially the relative

price therefore continues to rise. This leads to positive expected excess returns on the Home

asset that generate a further shift towards the Home asset, amplifying the impact of the

financial shock. This does not happen under the buy-and-hold friction, but in that case M

is even bigger because it weakens portfolio rebalancing as an equilibrating mechanism.

Another advantage of weakening the portfolio response to expected returns through the

portfolio friction, as opposed to a very large γ, is that it can account for excess return

momentum and reversal, as well as post-earnings announcement drift. In the frictionless

case we cannot generate this, no matter how large γ.

The last two rows of Table 4 consider a lower and higher value of the persistence of

the financial shock. The persistence is ρτ = 0.99 in the baseline case. We first lower it

significantly to 0.95 and then raise it to 0.995. A lower persistence implies that larger

financial shocks are needed to account for the targeted moments, especially excess return

volatility. In the frictionless case, a one standard deviation financial shock is now equal to 49

percent of the Home asset market and the price impact parameter M is only 0.05. Raising

27As discussed, this could alternatively be done by increasing perceived risk (e.g. infrequent disaster risk)
or introducing market segmentation.
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ρτ to 0.995 does the opposite, although the changes there are relatively modest. It remains

the case that in the frictionless case excessively large financial shocks are needed to account

for the data moments and the price impact parameter M is very small.

5 Conclusion

Over the past decade portfolio choice has become an important element of many DSGE open-

economy models. However, standard frictionless portfolio choice models have implications

that are at odds with both micro and macro evidence. In this paper we have introduced a

portfolio adjustment friction into a two-country DSGE model. While there is a literature that

has introduced similar frictions, this has usually been in the context of partial equilibrium

models. Here we have introduced the friction into an otherwise quite standard two-country

DSGE model by assuming that the assets are broad claims on capital stocks. This allows us

to investigate not just the asset pricing implications, but also overall net capital flows.

Portfolio adjustment frictions allow us to connect better to the data in a variety of ways.

First, it connects to micro evidence of infrequent portfolio adjustment by households. Second,

it implies a much larger price impact of financial shocks, addressing a criticism by Gabaix

and Koijen (2020) of frictionless models. Related to that, it can account for evidence that

financial shocks are the dominant driver of asset prices and asset prices are disconnected from

observed fundamentals. Third, it can account for a variety of moments involving national

saving, investment and net capital flows. Finally, it can account for evidence of excess

return momentum and reversal in a broad set of financial markets, and related post-earnings

announcement drift.

The portfolio friction plays an important role for both asset prices and capital flows. We

find that a higher portfolio friction significantly increases the impact of financial shocks on

asset prices, while reducing the price impact of shocks that affect dividends (productivity

shocks, capital share shocks and investment shocks). For net capital flows, the portfolio

friction increases the impact of both financial shocks and shocks that affect dividends. The

effect of saving shocks on net capital flows is little impacted by the friction. In a plausible

calibration we find that financial and saving shocks both account for close to half of the

variance of net capital flows.

An important direction for future research is further measurement of the magnitude of

portfolio frictions. While Bacchetta, Tièche and van Wincoop (2020) do so for US mutual

funds that invest in foreign equity, it will be important to consider the portfolio behavior of

individual households. A substantial literature has documented portfolio inertia by house-

holds, but has not estimated portfolio expressions implied by such frictions. The behavior of

individual households is important even when they invest in actively managed mutual funds
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as it is up to households to make reallocation decisions between these funds.
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Appendix

A Derivation Portfolio Expressions

Although all investors in each country will make the same portfolio and consumption deci-

sions, it is useful to introduce superscripts i for investors from a particular country, assuming

that there is a continuum of investors in each country on the interval [0, 1]. The portfolio

share of investor i from country h allocated to the Home country is then zih,t, consumption

is Ci
h,t, and the portfolio return is Rp,h,i

t+1 . The Bellman equation is

ln(V i
h,t) = max

Cih,t,z
i
h,t

{
(1− βh,t) ln(Ci

h,t) + βh,t

[
ln

([
Et
(
V i
h,t+1

)1−γ] 1
1−γ
)
− 0.5ψ(zih,t − zih,t−1)2

]}
.

(A.1)

Wealth W i
h,t evolves according to

W i
h,t+1 = Rp,h,i

t+1

(
W i
h,t − Ci

h,t

)
, (A.2)

where the portfolio return is

Rp,H,i
t+1 = ziH,tRH,t+1 + (1− ziH,t)e−τH,tRF,t+1 + TH,t+1 (A.3)

Rp,F,i
t+1 = ziF,te

−τF,tRH,t+1 + (1− ziF,t)RF,t+1 + TF,t+1. (A.4)

The costs τh,t are reimbursed lump sum through Th,t, which depends on the average portfolio

share zh,t =
∫ 1

0
zih,tdi that the agent cannot control. In equilibrium all agents will then earn

the portfolio returns

Rp,H
t+1 = zH,tRH,t+1 + (1− zH,t)RF,t+1 (A.5)

Rp,F
t+1 = zF,tRH,t+1 + (1− zF,t)RF,t+1. (A.6)

Conjecture that the value function takes the form

V i
h,t = W i

h,te
fh(St,z

i
h,t−1). (A.7)

The function fh captures expected future portfolio returns and risk. It depends both on a

vector St of aggregate state variables that agent i cannot control and on zih,t−1. We then

have

V i
h,t+1 = (W i

h,t − Ci
h,t)R

p,h,i
t+1 e

fh(St+1,zih,t). (A.8)

Note that zih,t, a control variable of agent i at time t, affects V i
h,t+1 both through the portfolio
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return and through fh(St+1, z
i
h,t). Denote

λih,t =
∂f ih,t
∂zih,t−1

, (A.9)

where f ih,t = fh(St, z
i
h,t−1). We then also have

λih,t+1 =
∂f ih,t+1

∂zih,t
, (A.10)

where f ih,t+1 = fh(St+1, z
i
h,t).

The Bellman equation can be written as

ln(V i
h,t) = max

Cih,t,z
i
h,t

{
(1− βh,t) ln(Ci

h,t) + βh,tln(W i
h,t − Ci

h,t)− 0.5βh,tψ(zih,t − zih,t−1)2+

βh,t
1

1− γ
ln

(
Et

(
Rp,h,i
t+1

)1−γ
e(1−γ)fh(St+1,zih,t)

)}
. (A.11)

The first-order condition for consumption is

Ci
h,t = (1− βh,t)W i

h,t. (A.12)

The portfolio problem is

max
zih,t

{
1

1− γ
ln

(
Et

(
Rp,h,i
t+1

)1−γ
e(1−γ)fh(St+1,zih,t)

)
− 0.5ψ(zih,t − zih,t−1)2

}
. (A.13)

The portfolio Euler equation for Home and Foreign agents is

Ete
−γrp,H,it+1 +rH,t+1+(1−γ)f iH,t+1 − Ete−γr

p,H
t+1+rF,t+1−τH,t+(1−γ)f iH,t+1 + (A.14)

Ete
(1−γ)rp,H,it+1 +(1−γ)f iH,t+1λiH,t+1 = ψ(ziH,t − ziH,t−1)Ete(1−γ)r

p,H,i
t+1 +(1−γ)f iH,t+1

Ete
−γrp,F,it+1 +rH,t+1−τF,t+(1−γ)f iF,t+1 − Ete−γr

p,F,i
t+1 +rF,t+1+(1−γ)f iF,t+1 + (A.15)

Ete
(1−γ)rp,F,it+1 +(1−γ)f iF,t+1λiF,t+1 = ψ(ziF,t − ziF,t−1)Ete(1−γ)r

p,F,i
t+1 +(1−γ)f iF,t+1 .

Here the lower case r refers to log asset returns and portfolio returns.

The Bellman equations are

f ih,t = βh,tln(βh,t) + (1− βh,t)ln(1− βh,t) + (A.16)

βh,t
1− γ

ln
(
Ete

(1−γ)rp,h,it+1 +(1−γ)f ih,t+1

)
− 0.5βh,tψ(zih,t − zih,t−1)2.
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It follows that

λih,t = βh,tψ(zih,t − zih,t−1) (A.17)

We can now remove the i superscripts. Define

fh,t = fh(St, zh,t−1)

λh,t = βh,tψ(zh,t − zh,t−1).

Note that fh,t+1 = fh(St+1, zh,t). fh,t+1 now depends only on the aggregate state at t+ 1.

The first-order portfolio Euler conditions for Home agents are

Ete
−γrp,Ht+1+rH,t+1+(1−γ)fH,t+1 − Ete−γr

p,H
t+1+rF,t+1−τH,t+(1−γ)fH,t+1 +

Ete
(1−γ)rp,Ht+1+(1−γ)fH,t+1ψβH,t+1(zH,t+1 − zH,t) =

ψ(zH,t − zH,t−1)Ete(1−γ)r
p,H
t+1+(1−γ)fH,t+1 (A.18)

Analogously, the first-order portfolio Euler condition for Foreign agents is

Ete
−γrp,Ft+1+rH,t+1−τF,t+(1−γ)fF,t+1 − Ete−γr

p,F
t+1+rF,t+1+(1−γ)fF,t+1 +

Ete
(1−γ)rp,Ft+1+(1−γ)fF,t+1ψβF,t+1(zF,t+1 − zF,t) =

ψ(zF,t − zF,t−1)Ete(1−γ)r
p,F
t+1+(1−γ)fF,t+1 . (A.19)

Consider the portfolio Euler for Home investors. Denote x̂t+1 = xt+1−Etxt+1. The Home

portfolio Euler can then be written as

Ete
(1−γ)r̂p,Ht+1+rH,t+1−rp,Ht+1+(1−γ)f̂H,t+1 − Ete(1−γ)r̂

p,H
t+1+rF,t+1−rp,Ht+1−τH,t+(1−γ)f̂H,t+1 +

Ete
(1−γ)r̂p,Ht+1+(1−γ)f̂H,t+1ψβH,t+1(zH,t+1 − zH,t) =

ψ(zH,t − zH,t−1)Ete(1−γ)r̂
p,H
t+1+(1−γ)f̂H,t+1 . (A.20)

For the first, second and fourth terms we will approximate by taking the expectation

of the exponential terms, assuming normality, and then linearizing around expectation and

variance terms in the exponential being zero.

We cannot follow this procedure for the third term as the exponential term is multiplied

by a stochastic variable. We instead take a second-order Taylor expansion and then take the

expectation. Note that this will deliver the same result if it were just an exponential term.

Treating portfolio shares as a parameter around which we do not linearize, the second-order

Taylor expansion is

ψβH,t+1(zH,t+1 − zH,t) + ψβ
(

(1− γ)r̂p,Ht+1 + (1− γ)f̂H,t+1

)
(zH,t+1 − zH,t). (A.21)
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The expectation of the third term in the portfolio Euler then becomes

ψEtβH,t+1(EtzH,t+1 − zH,t) + ψcov(βH,t+1, zH,t+1)

+ψβ(1− γ)cov(rp,Ht+1 , zH,t+1) + ψβ(1− γ)cov(fH,t+1, zH,t+1). (A.22)

Linearizing the first term, this becomes

ψβ(EtzH,t+1 − zH,t) + ω, (A.23)

where

ω = ψcov(βH,t+1, zH,t+1) +ψβ(1− γ)cov(rp,Ht+1 , zH,t+1) +ψβ(1− γ)cov(fH,t+1, zH,t+1). (A.24)

We will treat ω as a constant hedge term.

For the first two terms of the Home portfolio Euler (A.20), we compute the expectation

of the exponential and then linearize with respect to a zero variance and expectation (and a

zero tax). Combining the first two terms gives

Etert+1 + τH,t + 0.5var(rH,t+1)− 0.5var(rF,t+1)− γcov(ert+1, r
p,H
t+1) + (1− γ)cov(ert+1, fH,t+1).

(A.25)

Using the linear approximation rp,Ht+1 = zH,tert+1 + rF,t+1, we can write this as

Etert+1+τH,t−γσ2zH,t−γcov(ert+1, rF,t+1)+0.5var(rH,t+1)−0.5var(rF,t+1)+(1−γ)cov(ert+1, fH,t+1),

(A.26)

where σ2 = var(ert+1).

For the last term of the Home portfolio Euler (A.20), first compute the expectation of

the exponential, then linearize, including with respect to portfolio shares. This gives

ψ(zH,t − zH,t−1). (A.27)

To summarize, we have

βψ(EtzH,t+1 − zH,t) + Etert+1 + τH,t − ψ(zH,t − zH,t−1)− γσ2zH,t + νH = 0, (A.28)

where

νH = ω + 0.5var(rH,t+1)− 0.5var(rF,t+1)− γcov(ert+1, rF,t+1) + (1− γ)cov(ert+1, fH,t+1).

This is a hedge term that we treat as a constant.
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Collecting terms, we have

βψEtzH,t+1 −
(
γσ2 + ψ(1 + β)

)
zH,t + ψzH,t−1 + Etert+1 + τH,t + νH = 0. (A.29)

Following the same approximation method for the Foreign portfolio Euler equation, we have

βψEtzF,t+1 −
(
γσ2 + ψ(1 + β)

)
zF,t + ψzF,t−1 + Etert+1 − τF,t + νF = 0. (A.30)

Taking the average of these equations, it follows that

βψEtz
A
t+1 −

(
γσ2 + ψ(1 + β)

)
zAt + ψzAt−1 + Etert+1 + 0.5τDt + νA = 0. (A.31)

As a result of symmetry, in the the risky steady state zA = 0.5 and the expected excess

return is zero. It then follows that νA = 0.5γσ2.

B Linear System of Equations

We first solve the deterministic steady state. The steady state gross return is equal to

R = 1/β = 1+θAKθ−1−δ. We set A such that this implies a steady state capital stock of 1.

Therefore A = (1− β+ δβ)/(βθ). We also have Q = 1, I = δ, W = 1/β and D = (1− β)/β.

Asset returns (22) are then log-linearized as

rh,t+1 = (1− β)dh,t+1 + βqh,t+1 − qh,t, (B.32)

while dividends (23) are log-linearized as

dh,t+1 =
1− β + δβ

1− β

(
ah,t+1 +

1

θ
θh,t+1 + (θ − 1)kh,t+1

)
. (B.33)

The excess return then becomes

ert+1 = (1− β + δβ)

(
aDt+1 +

1

θ
θDt+1 + (θ − 1)kDt+1

)
+ βqDt+1 − qDt . (B.34)

Combining (16) and (21), and log-linearizing, we have kh,t+1 = kh,t + (1/ζ)(qh,t −mh,t).

In terms of differences and averages, this becomes

kAt+1 = kAt +
1

ζ

(
qAt −mA

t

)
(B.35)

kDt+1 = kDt +
1

ζ

(
qDt −mD

t

)
. (B.36)

33



(3) and (8) imply that wh,t+1 = rp,ht+1 + ln(βh,t) +wh,t. Linearizing the log portfolio return

for both Home and Foreign countries, using (6)-(7), gives

wH,t+1 = wH,t +
1

β
βH,t + z̄rH,t+1 + (1− z̄)rF,t+1 (B.37)

wF,t+1 = wF,t +
1

β
βF,t + (1− z̄)rH,t+1 + z̄rF,t+1. (B.38)

Using (B.32)-(B.33), we then have

wAt+1 = wAt +
1

β
βAt + βqAt+1 − qAt + (1− β + δβ)

(
aAt+1 +

1

θ
θAt+1 + (θ − 1)kAt+1

)
(B.39)

wDt+1 = wDt +
1

β
βDt + (2z̄ − 1)βqDt+1 − (2z̄ − 1)qDt

+(2z̄ − 1)(1− β + δβ)

(
aDt+1 +

1

θ
θDt+1 + (θ − 1)kDt+1

)
. (B.40)

Linearizing the market clearing conditions (24)-(25) gives

1

β
(z̄βH,t + (1− z̄)βF,t) + z̄wH,t + (1− z̄)wF,t + 2zAt = qH,t + kH,t+1 (B.41)

1

β
((1− z̄)βH,t + z̄βF,t) + (1− z̄)wH,t + z̄wF,t − 2zAt = qF,t + kF,t+1. (B.42)

Taking the average and difference, this becomes

1

β
βAt + wAt = qAt + kAt+1 (B.43)

2z̄ − 1

β
βDt + (2z̄ − 1)wDt + 4zAt = qDt + kDt+1. (B.44)

The last linearized equation is the portfolio equation (11). After substituting the excess

return (B.34), this becomes

βψEtz
A
t+1 −

(
γσ2 + ψ(1 + β)

)
zAt + ψzAt−1 + (B.45)

(1− β + δβ)Et

(
aDt+1 +

1

θ
θDt+1 + (θ − 1)kDt+1

)
+ βEtq

D
t+1 − qDt + 0.5τDt = 0.

The model is now solved by splitting the system into averages and differences. Regarding

the differences, there are 9 equations: relative capital accumulation (B.36), relative wealth

accumulation (B.40), relative market clearing (B.44), the portfolio expression (B.45) and five

exogenous processes associated with the shocks: relative productivity shock (27), relative

capital share shock (29), relative saving shock (32), relative investment shock (34) and

34



financial shock (35). In the Online Appendix we show that this can be reduced to a system

in 8 equations, after substituting the relative market clearing conditions into the portfolio

expression (B.45). Some further substitutions then lead to a system of the form A1Etxt+1 =

A2xt, where xt =
(
St, q

D
t

)′
, where St is the vector (36) of state variables. This can be used

to solve for qDt as a linear function of St.

In terms of averages, the model can easily be solved by hand. Take the average wealth

accumulation equation (B.39) one period earlier and substitute the average market clearing

condition (B.43) and average capital accumulation equation (B.35). This gives

qAt =
1

1− β + 1
ζ

(
1

ζ
mA
t +

1

β
βAt + (1− β + δβ)aAt +

1

θ
(1− β + δβ)θAt + (1− β + δβ)(θ − 1)kAt

)
(B.46)

C Saving, Investment and Net Capital Flows

Net saving is equal to labor plus dividend income, minus consumption. Saving in country h

is then

Sneth,t = −(1− βh,t)Wh,t + (C.47)

βh,t−1Wh,t−1

(
zh,t−1
QH,t−1

(
θH,tAH,tK

θH,t−1
H,t − δ

)
+

(1− zh,t−1)
QF,t−1

(
θF,tAF,tK

θF,t−1
F,t − δ

))
.

Linearizing for both countries, we have

SnetH,t =
βH,t
β

+
1− β
β2

βH,t−1 −
1− β
β

∆wH,t −
1− β
β

(z̄qH,t−1 + (1− z̄)qF,t−1)

+
1− β
β

(z̄dH,t + (1− z̄)dF,t) (C.48)

SnetF,t =
βF,t
β

+
1− β
β2

βF,t−1 −
1− β
β

∆wF,t −
1− β
β

((1− z̄)qH,t−1 + z̄qF,t−1)

+
1− β
β

((1− z̄)dH,t + z̄dF,t) . (C.49)

This uses the expression (30) for log dividends. It follows that

SD,nett =
βDt
β

+
1− β
β2

βDt−1 −
1− β
β

∆wDt −
1− β
β

(2z̄ − 1)qDt−1 +
1− β
β

(2z̄ − 1)dDt . (C.50)

Now use that

∆wDt =
1

β
βDt−1 + (2z̄ − 1)βqDt + (2z̄ − 1)(1− β)dDt − (2z̄ − 1)qDt−1. (C.51)
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This gives

SD,nett =
βDt
β

+ (1− β)(2z̄ − 1)
(
dDt − qDt

)
. (C.52)

Net investment is

Ineth,t =
1

ζ
(QH,t − emh,t) . (C.53)

Linearizing and taking the difference across countries, we have

ID,nett =
1

ζ

(
qDt −mD

t

)
. (C.54)

Therefore

CAt = 0.5SD,nett − 0.5ID,nett =
βDt
β

+ (1− β)(2z̄ − 1)
(
dDt − qDt

)
− 0.5

1

ζ

(
qDt −mD

t

)
. (C.55)

Next consider the current account from a capital flows perspective. Outflows and inflows

of the Home country are

OFt = (1− zH,t)βH,tWH,t −
QF,t

QF,t−1
(1− zH,t−1)βH,t−1WH,t−1 (C.56)

IFt = zF,tβF,tWF,t −
QH,t

QH,t−1
zF,t−1βF,t−1WF,t−1. (C.57)

Linearizing, we have

OFt = −∆zH,t + (1− z̄)
∆βH,t
β

+ (1− z̄)∆wH,t − (1− z̄)∆qF,t (C.58)

IFt = ∆zF,t + (1− z̄)
∆βF,t
β

+ (1− z̄)∆wF,t − (1− z̄)∆qH,t. (C.59)

Taking the difference and using (C.51) and (C.52), we can write net capital flows as

NFt = OFt − IFt = −2∆zAt + 2z̄(1− z̄)∆qDt + (1− z̄)SD,nett . (C.60)

Using the relative market clearing condition, and a good deal of algebra, it can be checked

that indeed

CAt = NFt. (C.61)
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Table 1 Calibrated Parameters (ψ = 1)

Parameter Description Parameter Description

σ = 0.0263 standard deviation excess return ρτ = 0.99 persistence financial shock

ψ = 1 portfolio friction σA,θ = 0.00228 s.d. average capital share shock

γ = 10 risk-aversion σD,θ = 0.00555 s.d. relative capital share shock

ζ = 118 adjustment cost investment σA,a = 0.00453 s.d. average productivity shock

β = 0.99 time discount rate σD,a = 0.00694 s.d. relative productivity shock

δ = 0.01125 rate of depreciation σA,β = 0.000475 s.d. average saving shock

θ = 0.35 capital share σD,β = 0.000342 s.d. relative saving shock

ρθ = 0.967 persistence capital share σA,m = 0.0343 s.d. average investment shock

ρa = 0.967 persistence productivity shock σD,m = 0.0247 s.d. relative investment shock

ρβ = 0.99 persistence saving shock στ = 0.00169 s.d. financial shock

ρm = 0.99 persistence investment shock

1



Table 2 Data and Model Moments

DATA MODEL

(i) (ii) (iii) (iv) (v) (vi) (vii)

ψ = 0 ψ = 1 ψ = 3 ψ = 0 ψ = 3 ψ = 1 ψ = 3
other parameters buy-and-hold

as column (ii)

STANDARD DEVIATIONS

excess return 0.0263 0.0263 0.0263 0.0263 0.0097 0.0638 0.0263 0.0263
0.0015 0.0015 0.0017 0.0006 0.0042 0.0015 0.0015

S
Y 0.0222 0.0221 0.0221 0.0222 0.0217 0.0260 0.0221 0.0221

0.0074 0.0075 0.0075 0.0072 0.0091 0.0074 0.0074
I
Y 0.0203 0.0203 0.0203 0.0203 0.0187 0.0309 0.0203 0.0203

0.0066 0.0066 0.0067 0.0062 0.0103 0.0066 0.0066
CA
Y 0.0156 0.0167 0.0172 0.0181 0.0123 0.0399 0.0167 0.0167

0.0056 0.0059 0.0062 0.0043 0.0139 0.0056 0.0056

∆yD 0.0070 0.0070 0.0070 0.0070 0.0070 0.0071 0.0070 0.0070
0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

AUTOCORRELATIONS

excess return 0.1030 -0.0054 0.1557 0.3565 -0.0057 0.3548 -0.0054 -0.0053
0.0810 0.0812 0.0781 0.0787 0.0790 0.0810 0.0810

S
Y 0.9620 0.9459 0.9465 0.9475 0.9459 0.9529 0.9459 0.9459

0.0288 0.0285 0.0278 0.0287 0.0247 0.0288 0.0288
I
Y 0.9650 0.9452 0.9472 0.9494 0.9455 0.9592 0.9452 0.9452

0.0291 0.0280 0.0270 0.0289 0.0223 0.0291 0.0291
CA
Y 0.9730 0.9464 0.9513 0.9575 0.9468 0.9652 0.9464 0.9464

0.0293 0.0265 0.0230 0.0302 0.0187 0.0293 0.0294

CONTEMPORANEOUS CORRELATIONS

corr(S/Y, I/Y ) 0.7748 0.6608 0.6411 0.6066 0.7993 0.0290 0.6610 0.6615
0.2610 0.2742 0.2951 0.1750 0.4253 0.2609 0.2608

corr(CA/Y,∆yH) -0.0130 -0.0287 -0.0268 -0.0267 0.0006 -0.0824 -0.0182 -0.0182
0.0700 0.0700 0.0701 0.0742 0.0804 0.0756 0.0756

corr(∆qH ,∆qF ) 0.7604 0.6499 0.7070 0.7650 0.9551 -0.0019 0.6496 0.6489
0.0468 0.0413 0.0368 0.0075 0.0873 0.0469 0.0469

corr(∆qD,∆dD) 0.2666 0.2704 0.2287 0.1743 0.7498 0.0718 0.2703 0.2701
0.0963 0.0984 0.1006 0.0453 0.0776 0.0963 0.0964

OTHER

R2 Tobin Q regression 0.2500 0.2500 0.2500 0.2500 0.1741 0.5829 0.2500 0.2500
0.0966 0.0972 0.0978 0.0878 0.0873 0.0966 0.0966

size financial shock 0.2080 0.0166 0.0109 0.0166 0.0166 0.0142 0.0075

Gabaix Koijen M 0.1173 1.4783 2.1786 0.0174 3.5451 1.7181 3.2446

2



Table 3 Variance Decomposition

(i) (ii) (iii) (iv) (v)

ψ = 0 ψ = 1 ψ = 3 ψ = 0 ψ = 3
other param.
as column (ii)

Excess Return

financial shocks 87.1 90.7 94.1 0.0 99.1

dividend shocks 7.1 5.2 3.4 56.0 0.5

saving shocks 0.0 0.0 0.0 0.0 0.0

investment shocks 5.8 4.1 2.5 43.9 0.4

Current Account

financial shocks 40.5 46.6 55.8 0.0 90.7

dividend shocks 0.8 0.9 1.0 1.5 0.2

saving shocks 53.3 47.9 39.8 90.8 8.0

investment shocks 5.4 4.6 3.5 7.7 1.1

Table 4 Sensitivity Analysis

Size Financial Shock Price Impact M

ψ = 0 ψ = 1 ψ = 3 ψ = 0 ψ = 1 ψ = 3

baseline 0.2080 0.0166 0.0109 0.1173 1.4783 2.1786
(γ = 10, ρτ = 0.99)

γ = 100 0.0315 0.0081 0.0059 0.7887 3.061 4.036

ρτ = 0.95 0.4893 0.0287 0.0165 0.0494 0.8517 1.4322

ρτ = 0.995 0.1728 0.0144 0.0096 0.1414 1.7052 2.4548

3
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Figure 4 Impulse Response Functions: Impact Portfolio Friction ψ*
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*Impulse response of relative asset price and CA/Y to one standard deviation shocks when ψ=1.
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C. Saving Shock: Relative Price D. Saving Shock: CA/Y
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Figure 4 (continued) Impulse Response Functions: Impact Portfolio Friction ψ*
E. Investment Shock: Relative Price

ψ=1

*Impulse response of relative asset price and CA/Y to one standard deviation shocks when ψ=1.
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G. Capital Share Shock: Relative Price H. Capital Share Shock CA/Y

F. Investment Shock CA/Y
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